Ad-hoc Technology in Future IP based Mobile Communication Systems

Frank Fitzek

acticom mobile networks

WWRF - Phoenix – 7/8 March 2002

Martin Reisslein
Arizona State University

Adam Wolisz
Technical University Berlin

Holger Boche
Heinrich Hertz Institut
Content

- Required Research
- Ad-hoc Testbed
- Expected Results and Time Frame
For different network types with different device classes the solution for routing strategies differ dramatically.
Auto-Configuration

• Assignment and release of IP addresses
 – omnipresent related protocols can not deployed in ad-hoc networks (DHCP)
 – dynamic default routes for bridging into fixed networks

• Link Connectivity
 – before IP connectivity link status has to be available
 – determine deterioration of link status versus out of range
Integrating Ad-hoc and Backbone

• Ad-hoc networks need to be integrated with existing infrastructure
 – Middleware systems like Microsoft .NET
 – Concepts for setting up secure, spontaneous collaborations of ad-hoc nodes
 – Automatically configuration for meaningful access to backbone servers (not merely IP)
 – Study traffic characteristics in such concepts
Making Ad-hoc Networks Meaningful

• Ad-hoc networks will carry new types of applications (e.g., sensor networks)
• Access to such applications has different semantics, e.g., addressing
 – Concepts for coupling ad-hoc/sensor networks with existing IP networks
 – Make non-standard address semantics accessible to IP networks (e.g., “any one temperature sensor in the bedroom”)
 – Default toolbox for distributed applications (e.g., peer-to-peer networks) in ad-hoc networks (handling impact of wireless and mobility)
 – Testbed to be developed
QoS - H.26L Video Streams

- Investigation of video sequences
- Sophisticated source model for simulations
- Video services have tightest QoS requirements

- TML 9.7 software
- First results for reference video sequences (akiyo, etc)
- Movies, sport, news for different quality levels
- Wireless adapted data rates (QCIF/CIF)
IEEE802.11a and Hiperlan2 are based on 5GHz technology
- OFDM + Multi-Modulation
- Data rate depends on distance between sender and receiver
- Range is a function of the antenna concept
- Measurement of IEEE802.11a interface cards started (office, outdoor, mall)
- Channel models will be generated for simulation purposes
Medium Access Control

- Omnipresent Techniques such as IEEE802.11a/b have some well known disadvantages for ad-hoc networks (RTS/CTS)
- Approach:
 - Tuning the RTS/CTS scheme
 - Usage of SDMA capability
 - New (ad-hoc aware) MAC scheme
 - OFDM/CDMA/SDMA
 - Power aware (passive antenna concepts)
Passive antenna concept for ad-hoc

- Reduce the blocking area
- Power saving with passive antenna concept
- Combination with space-time processing
Ad-hoc Testbed

- First simple ad-hoc test-bed
- Based on IEEE802.11b technology
 - 11Mbit/s
 - PRISM2 Chip Set
- Provision of real time video services
 - H.261, 64kbit/s, CIF
 - Ophone software
- Link quality aware routing
Ad-hoc Testbed

Real time video services for ad-hoc networks

acticom mobile networks
Ad-hoc Testbed - Insights

- successfully demonstrated at Marriott Hotel in Munich with one video flow over three hops
- high variance in transmission delay resulting in medium quality
- well known RTS/CTS problem occurred

 Li, Blake, De Cuoto, Lee, Moris MIT

Capacity of ad-hoc wireless networks

 Proc MobiCom 2001, Rome
Expected Results and Time Frame

<table>
<thead>
<tr>
<th>ID</th>
<th>Task</th>
<th>Q1 02</th>
<th>Q2 02</th>
<th>Q3 02</th>
<th>Q4 02</th>
<th>Q1 03</th>
<th>Q2 03</th>
<th>Q3 03</th>
<th>Q4 03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mrz</td>
<td>Apr</td>
<td>Mai</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
</tr>
<tr>
<td>1</td>
<td>Testbed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Video Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Link Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Auto-Configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Medium Access Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Q1 02: Jan, Feb, Mar
- Q2 02: Apr, Mai, Jun
- Q3 02: Jul, Aug, Sep
- Q4 02: Okt, Nov, Dez
- Q1 03: Jan, Feb
- Q2 03: Mar, Apr
- Q3 03: Mai, Jun
- Q4 03: Jul, Aug, Sep, Okt, Nov, Dez
Thank you for your attention!

www.acticom.info
www.acticom.de

www.eas.asu.edu/~mre
www-tkn.ee.tu-berlin.de
www.hhi.de/bm